Kalman Filtering with State Constraints: A Survey of Linear and Nonlinear Algorithms

نویسنده

  • Dan Simon
چکیده

The Kalman filter is the minimum-variance state estimator for linear dynamic systems with Gaussian noise. Even if the noise is non-Gaussian, the Kalman filter is best linear estimator. For nonlinear systems it is not possible, in general, to derive the optimal state estimator in closed form, but various modifications of the Kalman filter can be used to estimate the state. These modifications include the extended Kalman filter, the unscented Kalman filter, and the particle filter. Although the Kalman filter and its modifications are powerful tools for state estimation, we might have information about a system that the Kalman filter does not incorporate. For example, we may know that the states satisfy equality or inequality constraints. In this case we can modify the Kalman filter to exploit this additional information and get better filtering performance than the Kalman filter provides. This paper provides an overview of various ways to incorporate state constraints in the Kalman filter and its nonlinear modifications. If both the system and state constraints are linear, then all of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR

Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...

متن کامل

Kalman Filters for Nonlinear Systems and Heavy-Tailed Noise

This thesis is on filtering in state space models. First, we examine approximate Kalman filters for nonlinear systems, where the optimal Bayesian filtering recursions cannot be solved exactly. These algorithms rely on the computation of certain expected values. Second, the problem of filtering in linear systems that are subject to heavy-tailed process and measurement noise is addressed. Expecte...

متن کامل

Estimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study

One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...

متن کامل

Kalman Filtering with State Constraints

The Kalman filter is the optimal minimum-variance state estimator for linear dynamic systems with Gaussian noise. In addition, the Kalman filter is the optimal linear state estimator for linear dynamic systems with non-Gaussian noise. For nonlinear systems various modifications of the Kalman filter (e.g., the extended Kalman filter, the unscented Kalman filter, and the particle filter) have bee...

متن کامل

کاهش تعداد ماهواره‌ها در یک سیستم ناوبری ترکیبی GPS/INS با استفاده از فیلتر ذره‌ای

The estimation of situation in a combinational navigation GPS/INS with least number of satellites is the main purpose of this paper. As inertial measurement unit uses altimeter for height measurement, we can assume which height poses certain amounts, whereas geographical length and width are unknown to us in this paper. The single difference GPS is employed for updating the inertial navigation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009